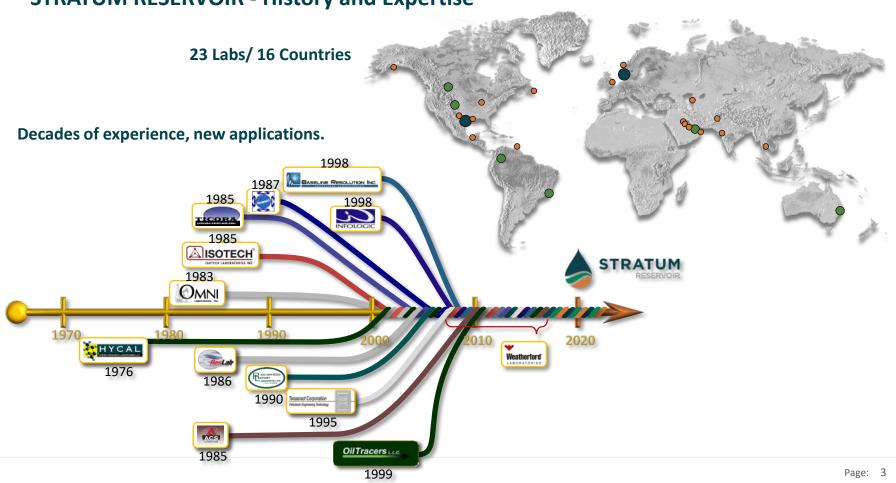


RELATIVE PERMEABILITY BEST PRACTICE FOR STEADY STATE METHOD

Helene Berntsen Auflem


Helene.Auflem@stratumreservoir.com

Chief Engineer SCAL (Trondheim, Norway)

OUTLINE

- 1. Stratum Reservoir introduction
- 2. Short introduction to Relative Permeability
- 3. Relative Permeability by Steady State method

STRATUM RESERVOIR - History and Expertise

Key Aspects

Global Experience and Best Practices

Stratum Reservoir has gained extensive experience in both Conventional and Unconventional reservoirs worldwide.

Subject Matter Experts (SME's)

SME's are made freely available, covering each discipline. Our specialists are able to assist with each stage of the program –from inception and design to integration and interpretation of all datasets.

Program Design and Objectives

Stratum Reservoir maintains a dynamic technical and managerial approach to ensure any program remains optimized against project objectives and deliverables.

Detailed Laboratory Services Overview

SERVICES & CAPABILITIES

- Global Wellsite Core Preservation & Stabilization
- DECT Scanning (Mineral Modeling)
- Routine Core Analysis
- Special Core Analysis
- Rock Mechanics
- Unconventional Core Analysis
- Petrographic Analysis
- Formation Damage Evaluation
- Geochemistry / Production Allocation
- Express Lab cuttings analysis

- PVT / Fluid Phase Behavior
- PVT for Unconventional
- Oilfield Water Analysis
- IOR/ EOR
- Pressurized Rotary Sidewall Core Analysis
- H₂S Identification and Mitigation
- Core to Log Integration
- Basin Data Studies
- Core Storage Expertise

SCAL - Petrophysics

- Rock Characterization Studies (XRD, SEM, THS)
- Electrical properties studies at reservoir pressure and temperature (FF, Kw, m-exp.)
- Porosity and Permeability as a function of Reservoir Pressure
- Pc-RI Capillary Pressure and Resistivity Studies Drainage and Imbibition (RI, n-exp., Swi, Sor)
- Capillary Pressure by Mercury Injection Analysis (MICP)
- Semi-Dynamic Electrical Properties Analysis (CI)
- Clay Conductivity Studies (Co/Cw, CEC)
- Nuclear Magnetic Resonance
- Capillary Threshold Pressure Analysis and Seal Capacity Studies (PcTh)
- Water Sensitivity and Critical Velocity Tests (Fines Migration)

SCAL – Dynamics and Advanced Testing

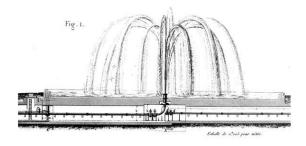
SCAL Semi Reservoir Conditions:

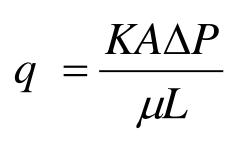
- Capillary pressure by centrifugation
- Relative Permeability by flooding with In Situ Saturation Monitoring (ISSM).
- Relative Permeability by centrifugation (P&T)
- IOR/EOR (Low salinity, ASP,....)
- Trapped Gas Saturation with ISSM
- NMR measurements

SCAL HPHT Reservoir Conditions with ISSM:

- USS and SS Relative Permeability with Live Fluids
- Water Alternating Gas Studies («WAG»)
- Gas Condensate Blockage Studies
- Critical Gas Saturation
- IOR/EOR (HC, CO₂, N₂, ASP, Low sal.,)
- Miscible floods Slim tube Experiments
- Miscible floods Core Sample
- Interfacial tension (IFT)

Short introduction to Relative Permeability

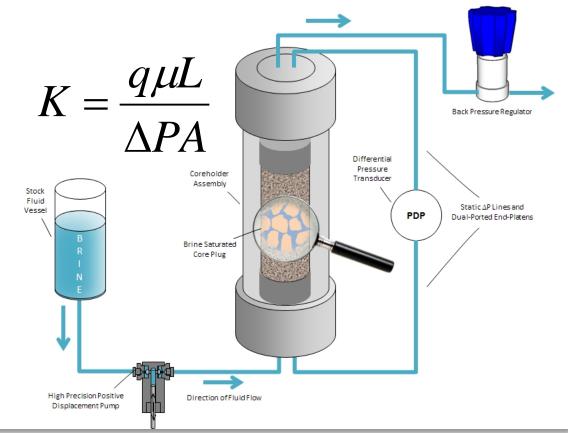

Introduction to Relative Permeability


Relative Permeability:

- Concept used to describe the movement of more than one fluid in a porous medium
- Basic description of how fluids move through the reservoir
- Understanding reservoir economics
 Hydrocarbon recovery rate
 Total recoverable reserves
 Water cut

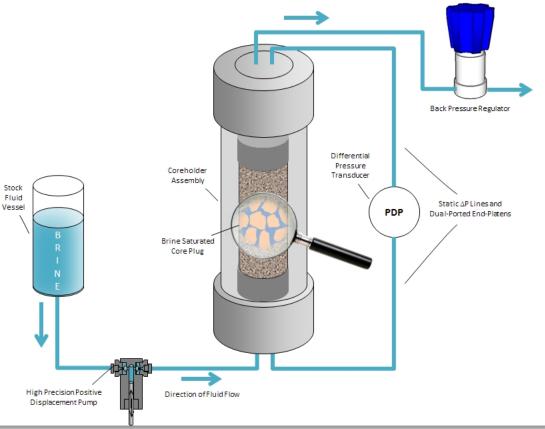
Permeability Description

General expression for fluid flow developed by Henry Darcy in 1856

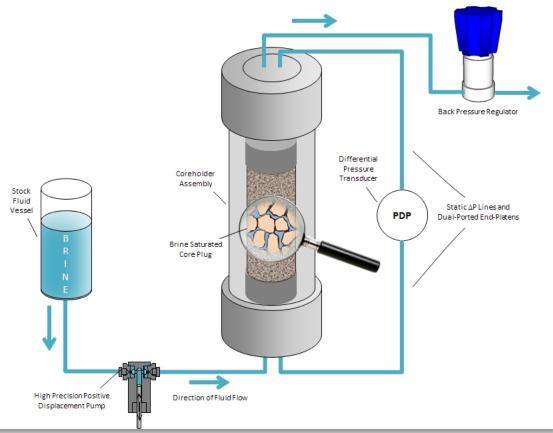

Where:

- q = the rate of fluid flow (m³/s)
- A = cross-sectional area (m²)
- μ = viscosity of the flowing fluid (cP)
- ΔP = pressure drop across the sample (Pa)
- L = core length (m)
- K = permeability (m²)

K is a constant when:


- the flow is laminar and Newtonian
- the fluid does not interact with the rock
- the rock is completely saturated and fluid continuous

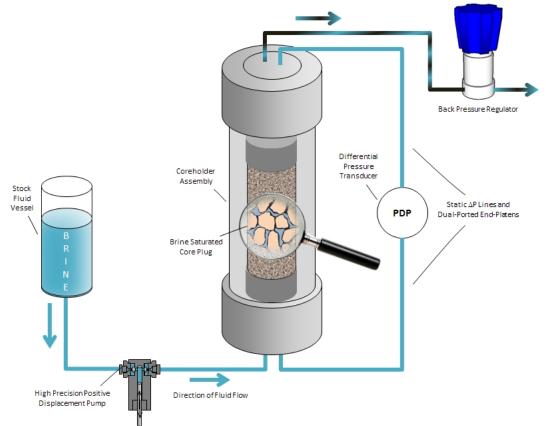
Liquid permeability


Absolute permeability...

...is the permeability determined with only one fluid present in the pore space

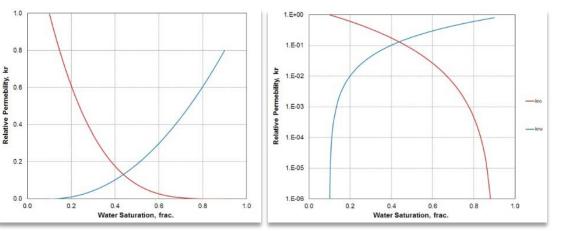
Effective permeability...

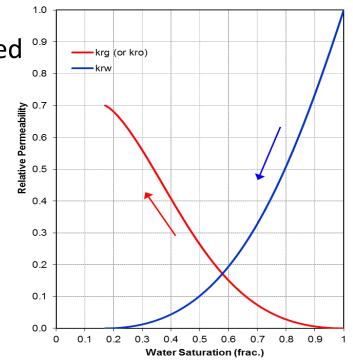
...is the permeability to one fluid, when there is more than one fluid present in the pore space



Relative permeability...

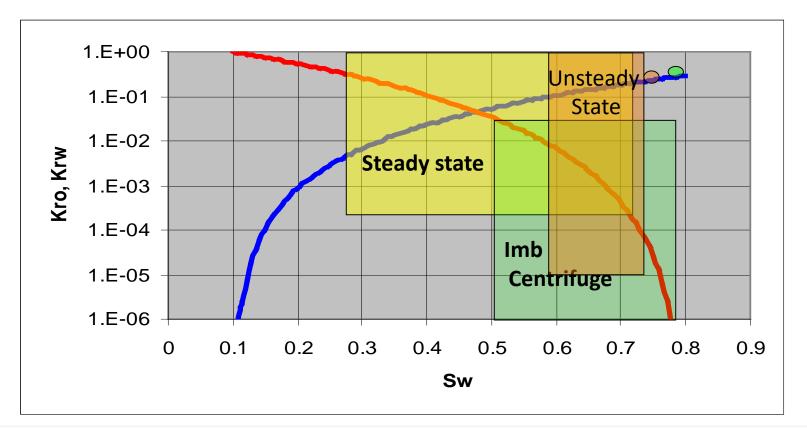
...is the effective permeability divided by a specified base permeability


$$k_r = \frac{k_e}{k_{ref}}$$


...is a measure of the ability of the porous system to conduct a fluid when more than one fluid is present

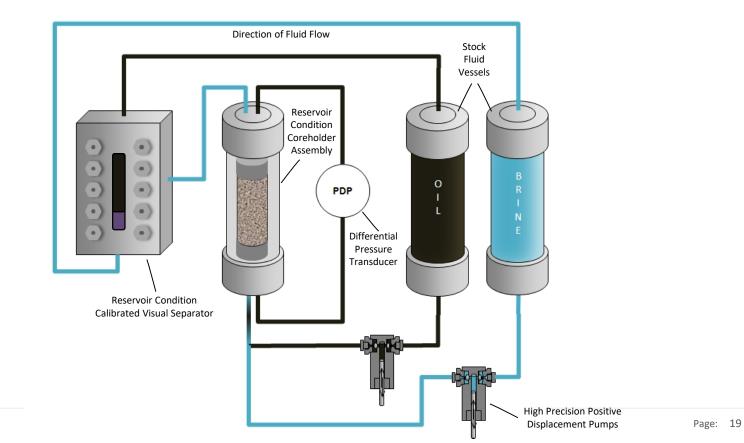
Base (Reference) Permeability

Primary drainage : k_r usually normalised to K_w Imbibition (& secondary drainage) k_r is referenced to $k_o(S_{wi})$

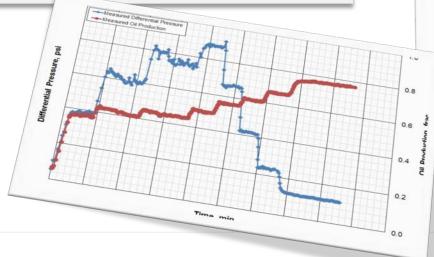


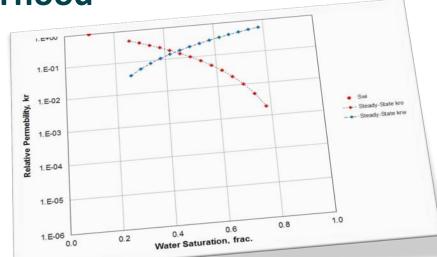
Data for Reservoir Engineers - Dynamic Simulation

- Water-Oil Relative Permeability(k_{rw}-k_{ro}) Water drive, water injection
- Gas-Oil Relative Permeability (k_{rg}-k_{ro}) Solution gas drive Gas cap drive Gas injection
- Water Gas Relative Permeability (k_{rw}-k_{rg}) Aquifer influx into gas reservoir
- Gas-Water Relative Permeability (k_{rg}-k_{rw})
 Gas storage, CO₂ sequestration



Imbibition Relative Permeability


Relative Permeability by Steady State method

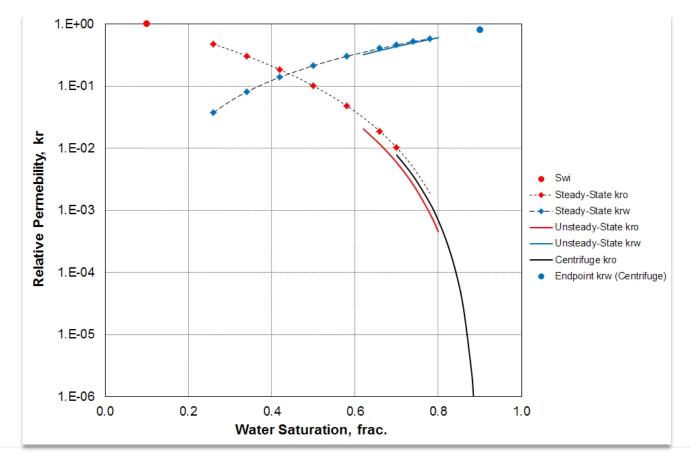

Steady State Coreflood (SS)

Steady State Imbibition Waterflood

- Continuous recirculation of injected brine & oil
- Higher flowrate possible with stable flow (minimise influence of P_c)

- Saturation from ISSM
- Calculate relative permeability directly from equilibrium ΔP and individual phase flowrates

Steady-state Overview


Advantages

- Data interpretation and calculation is (usually) straight forward
- Extended saturation range possible to define relative permeability curve
- Higher flow rates may be used to mitigate laboratory scale capillary pressure
- Suitable for most wettability cases & reservoir oils

Disadvantages

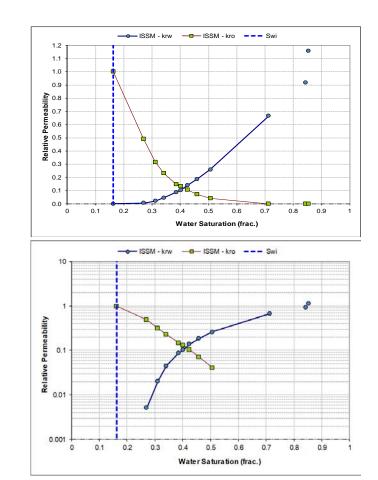
- Longer test required to achieve SS at each f_w (1 to 3 days per f_w)
- Uncertainty as to whether fluid displacement is truly representative of the reservoir process.
- Possible core damage due to large volume throughput (and high flow rate)
- Application of Darcy's Law is valid only if the saturation in the core is uniform (assumes P_c=0).

Centrifuge + USS + SS

Typical outline

Imbibition water displacing oil Relative Permeability

- Clean and dry core, measure basic properties
- Saturate core with brine, measure K_w
- Desaturate to Swi
- Restore Wettability
- Measure endpoint (base) (multi-rate) permeability


k_o(S_{wi})

• Measure Relative Permeability

 $k_w - k_o$

• Measure endpoint (multi-rate) permeability

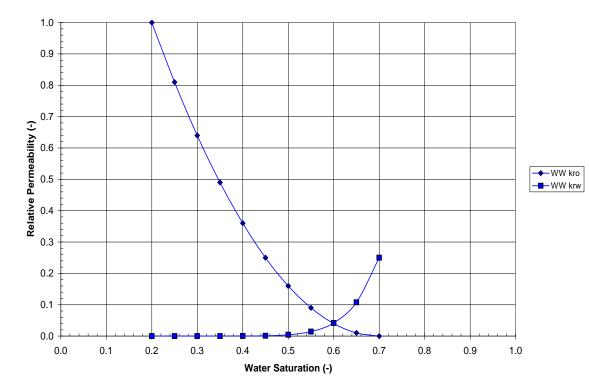
 $k_w(S_{or})$

Controlling Factors

A number of factors influence Relative Permeability:

- Initial water saturation, S_{wi}
- Wettability
- Pore structure homogeneity of core material
- Saturation history (& hysteresis)
- Test procedures
- Laboratory length scale (capillary pressure)
- Mobility ratio

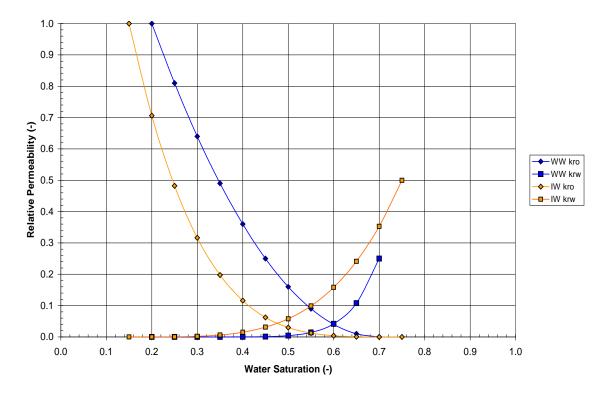
Required Fluids


Preparation of laboratory fluids Includes:

- a. Preparation of laboratory synthetic formation water (SFW) Client to supply composition
- b. Preparation of CsCl doped synthetic formation water (dSFW)
- c. Preparation of CsCl doped injection water (if different from dSFW) Client to supply composition
- d. Preparation of laboratory oil (Isopar-L) for ambient temperature measurements

Preparation of live oil Includes:

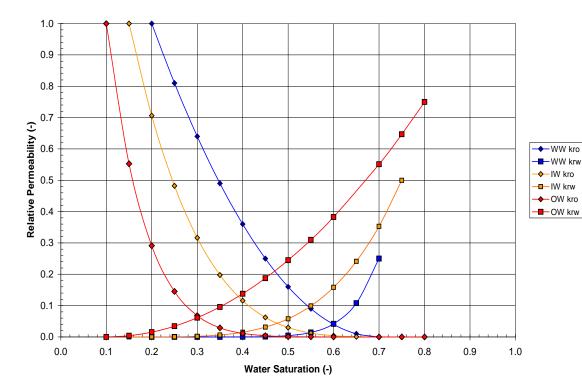
- a. Preparation and measurement of Stock Tank Oil (STO) composition. Client to supply surface oil
- b. Calculation & preparation of synthetic gas composition. Client to supply PVT report
- c. Measurement QC of gas composition.
- d. Recombination of STO and synthetic gas to a specified B.Pt pressure.
- e. Recombined live oil composition, B.Pt, GOR, Bo (measurement QC).
- f. Viscosity measurement.


Relative Permeability Curves - Effect of Wettability

Water Wet

- No = 2 Nw = 8
- Swir = 0.20 Sro = 0.30,
- krw' = 0.25, ultimate recovery = 0.625 OIIP

Relative Permeability Curves - Effect of Wettability


Water Wet

- No = 2 Nw = 8
- Swir = 0.20 Sro = 0.30,
- krw' = 0.25, ultimate recovery = 0.625 OIIP

Intermediate Wet

- No = 4 Nw = 4
- Swir = 0.15 Sro = 0.25,
- krw' = 0.5, ultimate recovery = 0.706 OIIP

Relative Permeability Curves - Effect of Wettability

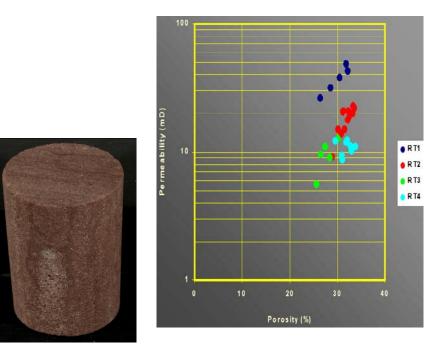
Water Wet

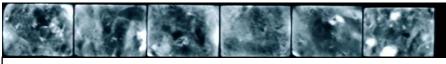
- No = 2 Nw = 8
- Swir = 0.20 Sro = 0.30,
- krw' = 0.25, ultimate recovery = 0.625 OIIP

Intermediate Wet

- No = 4 Nw = 4
- Swir = 0.15 Sro = 0.25,
- krw' = 0.5, ultimate recovery = 0.706 OIIP

Oil Wet


- No = 8 Nw = 2
- Swir = 0.10 Sro = 0.20,
- krw' = 0.75, ultimate recovery = 0.778 OIIP


Selection of core material

Select representative homogeneous core material

Samples screening and evaluation is needed to perform a proper selection of suitable and representative samples.

- Homogeneity screening (representativity)
- Characterize rock samples and identify representative lithology/rock type
 - 1 rock type per test
- Location of samples reference to reservoir
- All available information and data should be evaluated to be able to perform a proper samples selection, such as
 - CT scan,
 - Basic properties
 - lithological description, formation/zone, hydrocarbon leg (Gas, Water, Oil)
 - MICP, XRD, etc.

Composite Core

Preparation of core material

Cleaning and drying

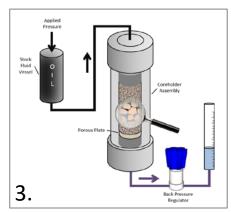
Preparation Methods

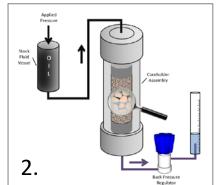
- Restored State Preparation
- Native State Preparation
- Cleaned State Preparation

Considerations for Preparation

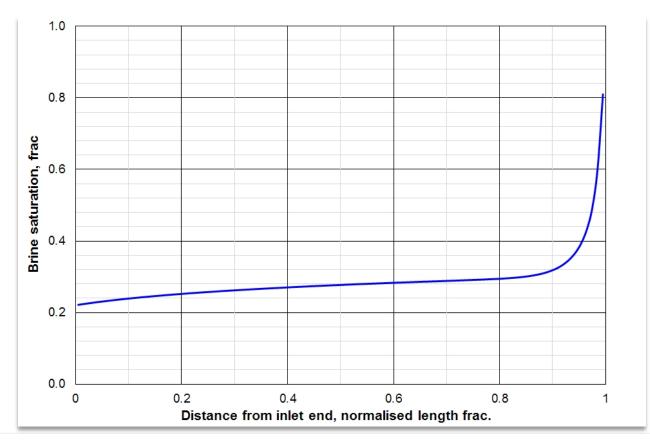
- How was the core drilled? (mud type, coring operations, well-site work)
- How the core was handled and preserved

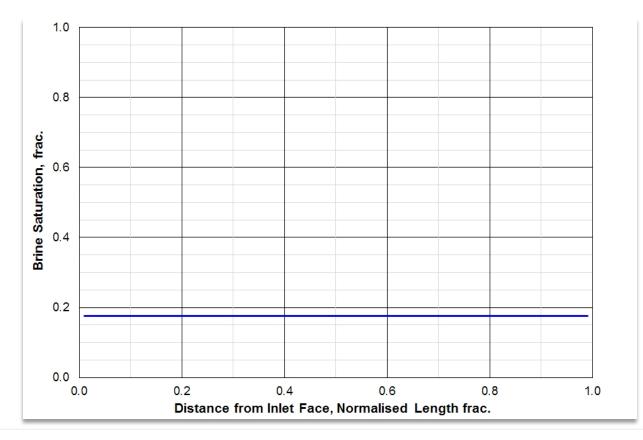
Restored state preparation


- Cleaning and drying methods adapted to clay content and minerology
- If sensitive clay materials consider non-drying route
- Saturate with appropriate brine
- Establish representative initial water saturation
- Restore wettability with live reservoir oil

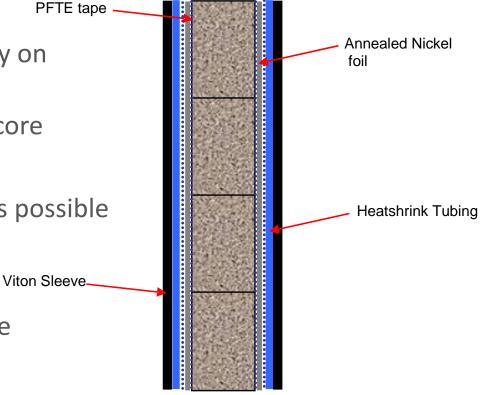

Centrifuge Drainage to Swi

Methods

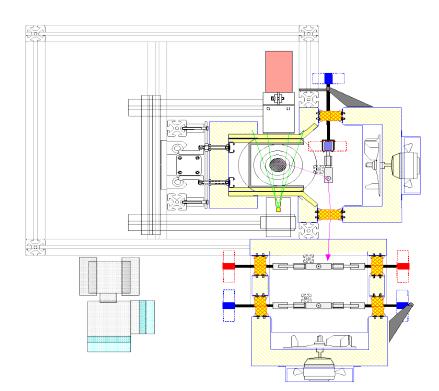

- 1. Drainage by Centrifuge
 - i. Fast, suitable for low permeable core material
 - ii. End effect on saturation distribution
- 2. Drainage by Viscous oil drive
 - i. Fast, suitable for unconsolidated core material
 - ii. End effect on saturation distribution
 - iii. Can give too high Swi
- 3. Drainage by porous plate preferred method
 - i. Gives homogeneous water saturation
 - ii. Pc, limited by porous plate, but suitable for most cases
 - Takes longer time but full PcRI not required when using to prepare for relative permeability measurements



Without Porous Plate



With Porous Plate



Composite core Composite core advantages and disadvantages

- For flood type tests
- Larger pore volume, higher accuracy on volumetric measurements
- Higher differential pressure across core
- Less impact of capillary end effects.
- Plug samples should be as similar as possible
 - Porosity, permeability
 - Saturation,
 - Pore size distribution
- Risk of effect of discontinuity in core junctions

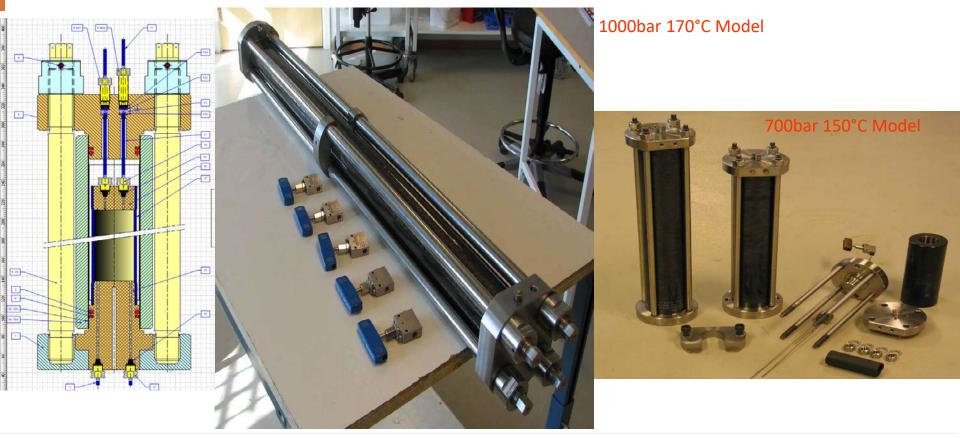
Reservoir Condition Core Flood Rig

Core Flooding

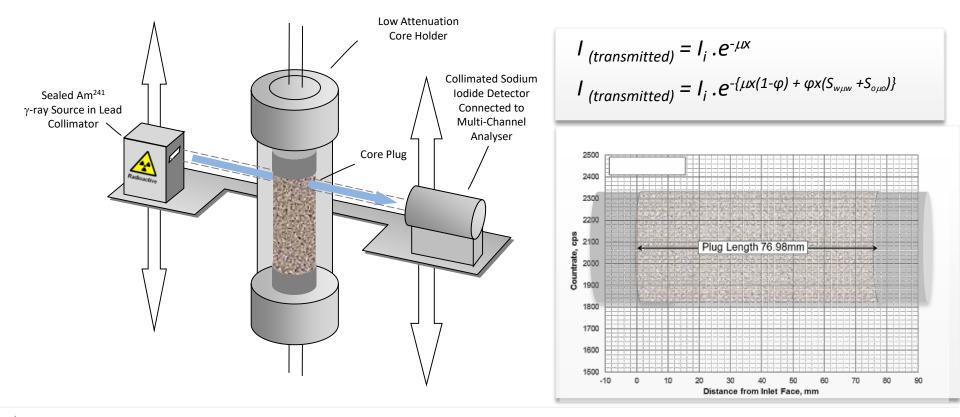
Saturation Determined by:

External Methods

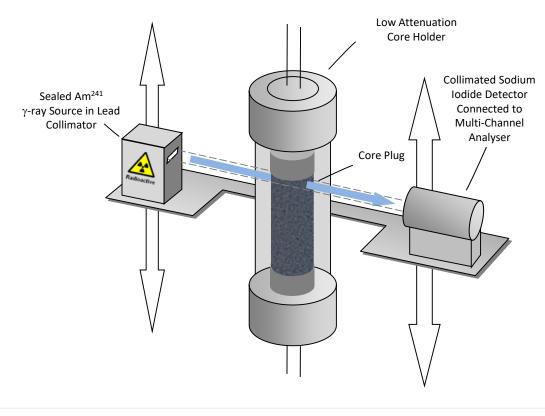
Volumetric (Visual Cell/Separator)

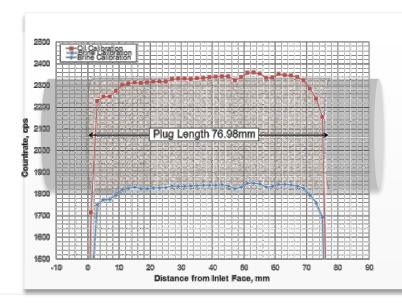

Solvent extraction and Karl Fischer titration – end point

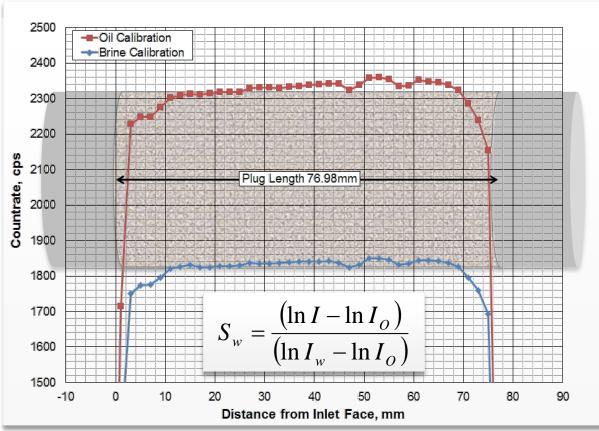
In-situ Methods

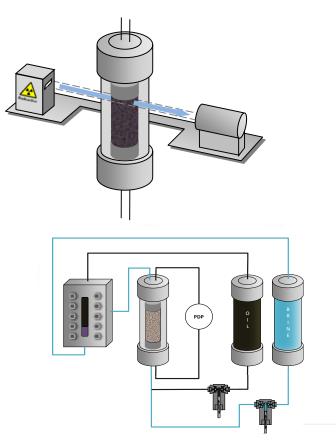

Gamma ray attenuation

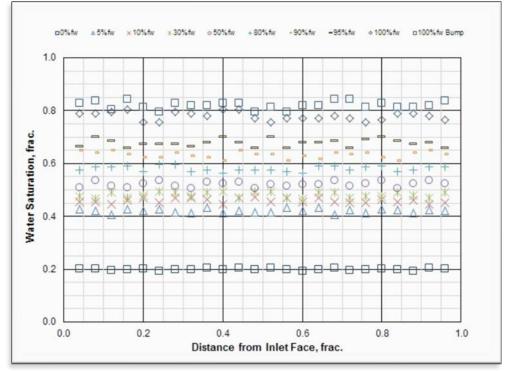
Tracer Techniques – end point


Stratum Reservoir Carbon Fibre Core Holders

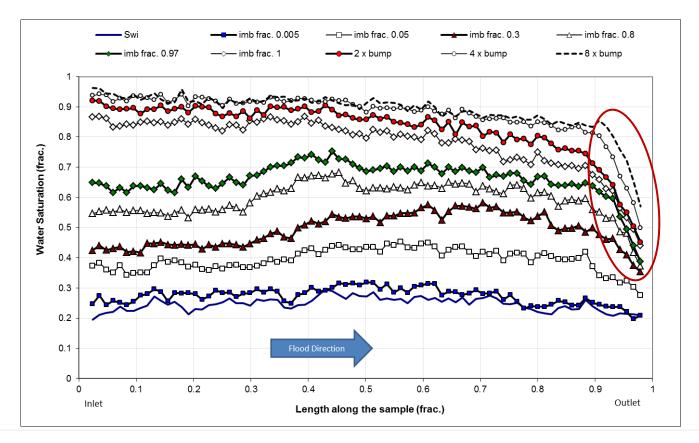

In-Situ Saturation Monitoring (ISSM)


In-Situ Saturation Monitoring (ISSM)


$$I_{(transmitted)} = I_i \cdot e^{-\mu x}$$
$$I_{(transmitted)} = I_i \cdot e^{-\{\mu x (1-\varphi) + \varphi x (S_{w\mu w} + S_{o\mu o})\}}$$



In-Situ Saturation Monitoring (ISSM)



ISSM For Steady-state Core Flooding

Laboratory Effects

Relative Permeability Models

bro

Corey Relative Permeability Model:

$$kron = \frac{kro}{kro'} = Son^{No} \qquad k_{ro}' = \text{end-point kro}$$

$$krwn = \frac{krw}{krw'} = Swn^{Nw} \qquad k_{rw}' = \text{end-point krw}$$

$$Swn = \frac{S_w - S_{wir}}{1 - S_{wir} - S_{ro}} \qquad Son = \frac{1 - S_w - S_{ro}}{1 - S_{wir} - S_{ro}} = 1 - Swn$$

Typical properies for	Condition	S _{wi} (%)	S _{or} (%)	k _{rw} '	n _w	n _o
different wettability conditions	Water wet (WW)	> 20 -25	< 10	0.1 - 0.4	4 - 6	2 - 3
	Mixed wet (MW)	15-25	10-15	0.5 - 0.9	2 - 4	3 - 5
	Oil Wet (OW)	< 15	> 15	0.8 - 1.0	1.5 - 3	6 - 8

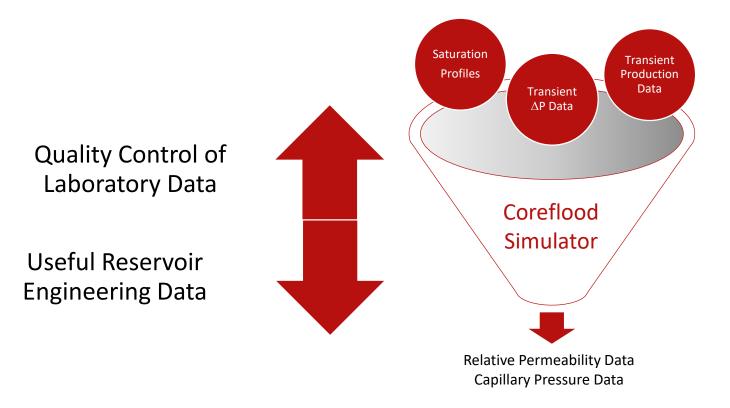
Relative Permeability Models

LET Relative Permeability Model:

$$k_{rw} = k_{rw}^{0} \frac{(S_{w}^{*})^{L_{w}}}{(S_{w}^{*})^{L_{w}} + E_{w}(1 - S_{w}^{*})^{T_{w}}}$$

$$k_{ro} = k_{ro}^{0} \frac{(1 - S_{w}^{*})^{L_{o}}}{(1 - S_{w}^{*})^{L_{o}} + E_{o}(S_{w}^{*})^{T_{o}}}$$

$$S_w^* = \frac{S_w - S_{wi}}{1 - S_{or} - S_{wi}}$$

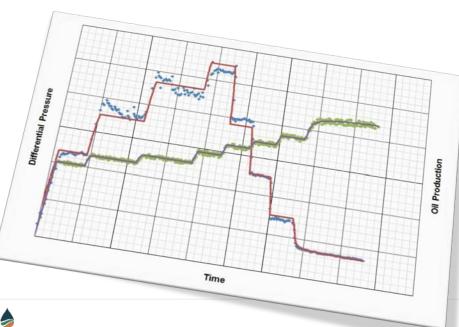

Constraints:

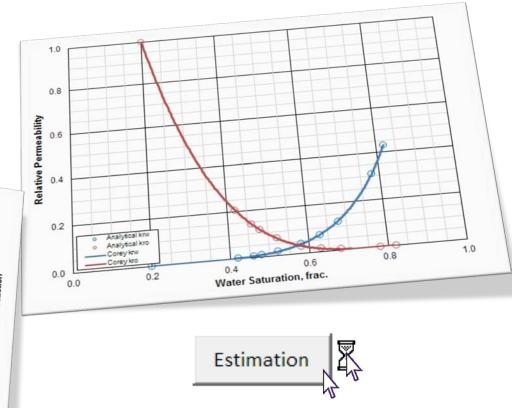
- $L_w \geq 1.0$, $E_w \geq 0.5$, $T_w \geq 0.5$
- $L_o \ge 1.0$, $E_o \ge 0.5$, $T_o \ge 0.5$

where:

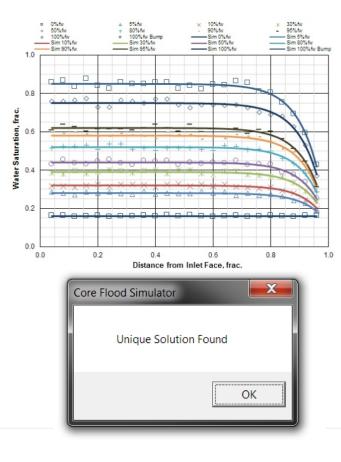
k _{rw}	-	water relative permeability
k _{ro}	-	oil relative permeability
k_{rw}^0	-	water relative permeability at residual oil saturation
k_{ro}^0	- water	oil relative permeability at initial saturation
S _w	-	water saturation
S_{w^*}	-	normalised water saturation
S _{wi}	-	initial water saturation
S _{or}	-	residual oil saturation
L_{w} , E_{w} ,	T_w	- LET parameters for water
$L_{o'} E_{o'}$	T _o	- LET parameters for oil

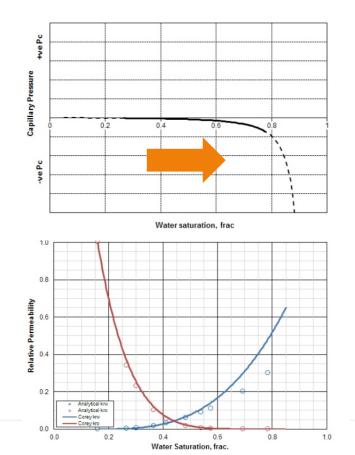
History Matching Laboratory Data by Simulation

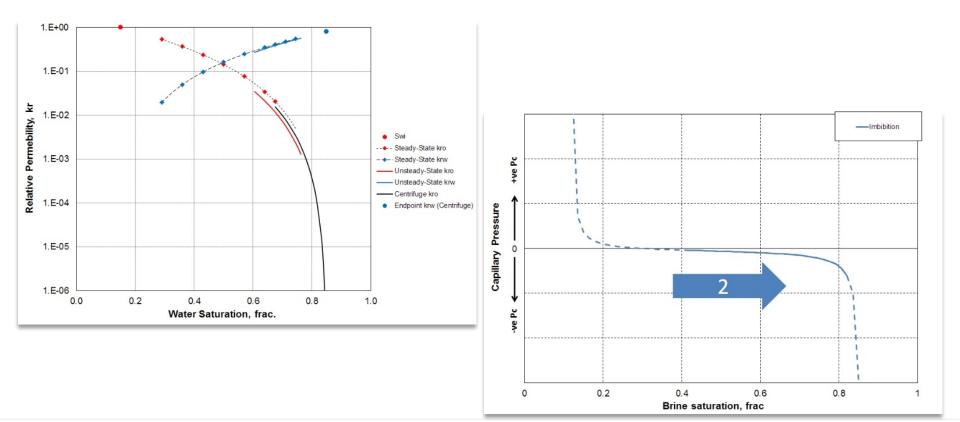



Core Flood Simulator

roperties	(Inlet)			e ×	X 1.1 Co	rev / Ski	æveland		
TotalTime	1000.000	min	-					-	
Time	Water rate	Oil rate	 Ramp time 		Relative perm	neability:	Corey		-
min			· min ·		Capillary pres	isure: S	kjæveland	1	*
0	0.1	0.9	0.000000		Parameters f	or relativ	e permea	bility	
120	0.2	0.799998	0.000000]	Value	Min	Max
180	0.5	0.5	0.000000		Na		4	1	15
240	0.799998	0.2	0.000000		No		4	1	15
300	0.9	0.1	0.000000		Kru(Ser)		0.5	0	1
360	0.949998	0.05	0.000000		Kra(Smi)		1	0	1
420	1	0	0.000000						
roject Exp	olorer			8 ×	Saturation va	lues			
Special Co	ore Analysis Proj	ect Elements				1	Value	Min	Max
E Pr	oject LPS Semin	5r			Sai	2	0.15	0	1
e .	Experiments				Smi Sar		0.15	0	1
ė- 鱼	Experiments D ANO 1 Setup Poro Base	sity					0.25	0	1
ė- 鱼	Experiments ID ANO 1 Setup - Poro - Base - Initia Grid - Inlet	sity permeability I saturation			57		0.25	0	1 1 Max
ė- 鱼	Experiments ID ANO 1 Setup - Poro - Base - Initia - Initia - Initia - Fluid	sity permeability I saturation S			S ₉₇	or capilla	0.25 ry pressu] 0 re	1 1 Max inf
ė- 鱼	Experiments	sity permeability I saturation S			S _p Parameters f	or capilla	0.25 ry pressu Value	o re Min	
ė- 鱼	Experiments	sity permeability I saturation s ental data			Sor Parameters fo psi Cor	or capilla	0.25 ry pressu Value 1	re Min	inf
8- 9 8- 6	Experiments ID ANO 1 Setup Poro Base Initia Initia Initia Fiuid N Experime	sity permeability I saturation s ental data nalysis			S ₃₇ Parameters fo psi C ₂₇ A ₄₇	or capilla	0.25 ry pressur Value 1 0.25	0 Min 0.25	inf 2
e 9	Experiments ID ANO 1 Constraints Constrai	sity permeability I saturation s ental data nalysis ce data			Sx Parameters for psi Cx Ax Cq	or capilla	ry pressur Value 1 0.25 1	e Min 0.25 0	inf 2 inf
8- 9 8- 6	Experiments ID ANO 1 Setup Poro Base Initia Grid Fluid Analyses Y Setup Fluid Analyses A Reference Reference Reference	sity permeability I saturation s ental data nalysis se data ANO 1			Sx Parameters for psi Cx Ax Cq	or capilla	ry pressur Value 1 0.25 1	e Min 0.25 0	inf 2 inf
8- 9 8- 6	Experiments ID ANO 1 ANO 1 Setup Poro Base Inite Grid Fluid Analyses 1 Sendra An Referen Referen Ref. Box Poro Fluid Ref. Flow pro	sity permeability I saturation s ental data nalysis se data ANO 1	and		S ₀ Parameters for psi C ₀ C ₀ C ₀ C ₀ C ₀ C ₀ C ₀ C ₀	or capilla	0.25 ry pressui Value 1 0.25 1 0.33	e Min 0.25 0	inf 2 inf
8- 9 8- 6	Experiments ID ANO 1 Setup Poro Base initia Find	sity permeability I saturation s ental data halysis ze data AHO 1 perties iorey / Skjæveli. Li) ANO 1 Sim	Differential pressure	8	S _r Parameters f psi Cr Ar C G Ar C G Use indivi	or capilla	0.25 ry pressui Value 1 0.25 1 0.33	e Min 0.25 0	inf 2 inf
8- 9 8- 6	Experiments ID ANO 1 X Setup Base Initia Grid Fluid Analyses Y Experime Analyses Y Reference Reference X Setup Fluid N Experiments N Experime	sity permeability saturation s ental data valysis e data ANO 1 perties orey / Sitaevel L1) ANO 1 Sim L1) ANO 1 Sim	Differential pressur Oil production	8	S ₀ Parameters for psi C ₀ C ₀ C ₀ C ₀ C ₀ C ₀ C ₀ C ₀	or capilla	0.25 ry pressui Value 1 0.25 1 0.33	e Min 0.25 0	inf 2 inf
0 9	Experiments ID ANO 1 Setup Poro Base Setup Grid Grid Meterent Analyses N Experime Analyses Referent Referent Poro Setup Setup N Experiments Setup N Experiments Setup Setu	sity permeability saturation s ental data valysis e data ANO 1 perties orey / Sitaevel L1) ANO 1 Sim L1) ANO 1 Sim	Differential pressure		S_{pr} Parameters fr psi C_r A_r G_s A_r	or capilla	0.25 ry pressui Value 1 0.25 1 0.33	e Min 0.25 0	inf 2 inf
8- 9 8- 6	Experiments ID ANO 1 Setup Poro Base Setup Grid Grid Meterent Analyses N Experime Analyses Referent Referent Poro Setup Setup N Experiments Setup N Experiments Setup Setu	sity permeability saturation s ental data valysis e data ANO 1 perties orey / Sitaevel L1) ANO 1 Sim L1) ANO 1 Sim	Differential pressur Oil production		S _r Parameters f psi Cr Ar C G Ar C G Use indivi	or capilla	0.25 ry pressu: Value 1 0.25 1 0.33	0 Min 0.25 0 0.25	inf 2 inf 2


Simulation of Transient Data


History matching of oil production and ΔP transient data to derive k_{rw} & k_{ro}


Case History 2 (Negative Imbibition Pc; Oil Wet)

Page: 49

Data for the Reservoir Engineer

- 1. Anderson, W. G. (1986, October 1). Wettability Literature Survey- Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability. Society of Petroleum Engineers. doi:10.2118/13932-PA
- 2. Amott, E. (1959, January 1). Observations Relating to the Wettability of Porous Rock. Society of Petroleum Engineers.
- 3. Donaldson, E. C., Thomas, R. D., & Lorenz, P. B. (1969, March 1). Wettability Determination and Its Effect on Recovery Efficiency. Society of Petroleum Engineers. doi:10.2118/2338-PA
- 4. Johnson, E. F., Bossler, D. P., & Bossler, V. O. N. (1959, January 1). Calculation of Relative Permeability from Displacement Experiments. Society of Petroleum Engineers.
- 5. Hagoort, J. (1980, June 1). Oil Recovery by Gravity Drainage. Society of Petroleum Engineers. doi:10.2118/7424-PA
- 6. Forbes, P. (1994, July 1). Simple And Accurate Methods For Converting Centrifuge Data Into Drainage And Imbibition Capillary Pressure Curves. Society of Petrophysicists and Well-Log Analysts.

Thank you!

Helene.Auflem@stratumreservoir.com