

RELATIVE PERMEABILITY BEST PRACTICE FOR STEADY STATE METHOD

Helene Berntsen Auflem

Helene.Auflem@stratumreservoir.com

Chief Engineer SCAL (Trondheim, Norway)

OUTLINE

- 1. Stratum Reservoir introduction
- 2. Short introduction to Relative Permeability
- 3. Relative Permeability by Steady State method

STRATUM RESERVOIR - History and Expertise

S

Key Aspects

Global Experience and Best Practices

Stratum Reservoir has gained extensive experience in both Conventional and Unconventional reservoirs worldwide.

Subject Matter Experts (SME's)

SME's are made freely available, covering each discipline. Our specialists are able to assist with each stage of the program –from inception and design to integration and interpretation of all datasets.

Program Design and Objectives

Stratum Reservoir maintains a dynamic technical and managerial approach to ensure any program remains optimized against project objectives and deliverables.

Detailed Laboratory Services Overview

SERVICES & CAPABILITIES

- Global Wellsite Core Preservation & Stabilization
- DECT Scanning (Mineral Modeling)
- Routine Core Analysis
- **Special Core Analysis**
- Rock Mechanics
- **Unconventional Core Analysis**
- Petrographic Analysis
- **F** Formation Damage Evaluation
- Geochemistry / Production Allocation
- Express Lab cuttings analysis
- PVT / Fluid Phase Behavior
- **PVT** for Unconventional
- Oilfield Water Analysis
- **IOR/ EOR**
- **Pressurized Rotary Sidewall Core Analysis**
- $H₂S$ Identification and Mitigation
- Core to Log Integration
- Basin Data Studies
- Core Storage Expertise

SCAL - Petrophysics

- **B** Rock Characterization Studies (XRD, SEM, THS)
- **Electrical properties studies at reservoir pressure and** temperature (FF, Kw, m-exp.)
- **Porosity and Permeability as a function of Reservoir** Pressure
- Pc-RI Capillary Pressure and Resistivity Studies Drainage and Imbibition (RI, n -exp., Swi, Sor)
- Capillary Pressure by Mercury Injection Analysis (MICP)
- **Semi-Dynamic Electrical Properties Analysis (CI)**
- Clay Conductivity Studies (Co/Cw, CEC)
- Nuclear Magnetic Resonance
- Capillary Threshold Pressure Analysis and Seal Capacity Studies (PcTh)
- Water Sensitivity and Critical Velocity Tests (Fines Migration)

SCAL – Dynamics and Advanced Testing

SCAL Semi Reservoir Conditions:

- Capillary pressure by centrifugation
- Relative Permeability by flooding with In Situ Saturation Monitoring (ISSM).
- **Relative Permeability by centrifugation (P&T)**
- IOR/EOR (Low salinity, ASP,....)
- Trapped Gas Saturation with ISSM
- NMR measurements

SCAL HPHT Reservoir Conditions with ISSM:

- USS and SS Relative Permeability with Live Fluids
- Water Alternating Gas Studies («WAG»)
- **Gas Condensate Blockage Studies**
- **Critical Gas Saturation**
- IOR/EOR (HC, $CO₂$, N₂, ASP, Low sal.,)
- **Miscible floods Slim tube Experiments**
- **Miscible floods Core Sample**
- Interfacial tension (IFT)

Short introduction to Relative Permeability

Introduction to Relative Permeability

Relative Permeability:

- Concept used to describe the movement of more than one fluid in a porous medium
- Basic description of how fluids move through the reservoir
- Understanding reservoir economics Hydrocarbon recovery rate Total recoverable reserves Water cut

Permeability Description

General expression for fluid flow developed by Henry Darcy in 1856

Where:

- $q =$ the rate of fluid flow (m³/s)
- $A = \csc 5\sec 1$ area (m²)
- μ = viscosity of the flowing fluid (cP)
- ΔP = pressure drop across the sample (Pa)
- $L = \text{core length (m)}$
- $K =$ permeability (m²)

 K is a constant when:

- the flow is laminar and Newtonian
- the fluid does not interact with the rock
- the rock is completely saturated and fluid continuous

Liquid permeability

Absolute permeability…

…is the permeability determined with only one fluid present in the pore space

Effective permeability…

…is the permeability to one fluid, when there is more than one fluid present in the pore space

Relative permeability…

…is the effective permeability divided by a specified base permeability

$$
k_r = \frac{k_e}{k_{ref}}
$$

…is a measure of the ability of the porous system to conduct a fluid when more $k_r = \frac{k_e}{k_{ref}}$
...is a measure of the abi
of the porous system to
conduct a fluid when mo
than one fluid is present

Base (Reference) Permeability

Primary drainage : k_r usually normalised to K_w Imbibition (& secondary drainage) k_r is referenced $\frac{0.8}{0.8}$ to $k_o(S_{wi})$

Data for Reservoir Engineers - Dynamic Simulation

- Water-Oil Relative Permeability(k_{rw} - k_{ro}) Water drive, water injection
- Gas-Oil Relative Permeability $(k_{r} k_{r0})$ Solution gas drive Gas cap drive Gas injection
- Water Gas Relative Permeability (k_{rw} - k_{rg}) Aquifer influx into gas reservoir
- Gas-Water Relative Permeability (k_{rg} - k_{rw}) Gas storage, $CO₂$ sequestration

Imbibition Relative Permeability

Relative Permeability by Steady State method

Steady State Coreflood (SS)

$E = +U$ • Continuous recirculation of

- injected brine & oil
- Higher flowrate possible with stable flow (minimise influence of P_c)

- Saturation from ISSM
- Calculate relative permeability directly from equilibrium ∆^P and individual phase flowrates

Steady-state Overview

- Data interpretation and calculation is (usually) straight forward
- Extended saturation range possible to define relative permeability curve
- Higher flow rates may be used to mitigate laboratory scale capillary pressure
- Suitable for most wettability cases & reservoir oils

Advantages Disadvantages

- Longer test required to achieve SS at each f_w (1 to 3 days per f_w)
- Uncertainty as to whether fluid displacement is truly representative of the reservoir process.
- Possible core damage due to large volume throughput (and high flow rate)
- Application of Darcy's Law is valid only if the saturation in the core is uniform $(assumes P_c=0).$

Centrifuge + USS + SS

Typical outline

Imbibition water displacing oil Relative Permeability

- Clean and dry core, measure basic properties
- Saturate core with brine, measure K_w
- Desaturate to Swi
- Restore Wettability
- Measure endpoint (base) (multi-rate) permeability

$k_{o}(S_{wi})$

• Measure Relative Permeability

 $k_w - k_o$

• Measure endpoint (multi-rate) permeability

 $k_w(S_{\text{or}})$

Controlling Factors

A number of factors influence Relative Permeability:

- Initial water saturation, $S_{\text{w}i}$
- Wettability
- Pore structure $-$ homogeneity of core material
- Saturation history (& hysteresis)
- Test procedures
- Laboratory length scale (capillary pressure)
- Mobility ratio

Required Fluids

Preparation of laboratory fluids Includes:

- a. Preparation of laboratory synthetic formation water (SFW) Client to supply composition
- b. Preparation of CsCl doped synthetic formation water (dSFW)
- c. Preparation of CsCl doped injection water (if different from dSFW) Client to supply composition
- d. Preparation of laboratory oil (Isopar-L) for ambient temperature measurements

Preparation of live oil Includes:

- a. Preparation and measurement of Stock Tank Oil (STO) composition. Client to supply surface oil
- b. Calculation & preparation of synthetic gas composition. Client to supply PVT report
- c. Measurement QC of gas composition.
- d. Recombination of STO and synthetic gas to a specified B.Pt pressure.
- e. Recombined live oil composition, B.Pt, GOR, Bo (measurement QC).
- f. Viscosity measurement.

Relative Permeability Curves - Effect of Wettability

Water Wet

- $No = 2$ $Nw = 8$
- Swir = 0.20 Sro = 0.30 .
- krw' = 0.25, ultimate recovery = 0.625 OIIP

Relative Permeability Curves - Effect of Wettability

Water Wet

- $No = 2$ $Nw = 8$
- Swir = 0.20 Sro = 0.30 .
- krw' = 0.25, ultimate recovery = 0.625 OIIP

Intermediate Wet

- $No = 4$ $Nw = 4$
- Swir = 0.15 Sro = 0.25 .
- krw' = 0.5 , ultimate recovery = 0.706 OIIP

Relative Permeability Curves - Effect of Wettability

Water Wet

- $No = 2$ $Nw = 8$
- Swir = 0.20 Sro = 0.30 .
- krw' = 0.25, ultimate recovery = 0.625 OIIP

Intermediate Wet

- $No = 4$ $Nw = 4$
- Swir = 0.15 Sro = 0.25 .
- krw' = 0.5 , ultimate recovery = 0.706 OIIP

Oil Wet

- $No = 8$ $Nw = 2$
- Swir = 0.10 Sro = 0.20 .
- krw' = 0.75, ultimate recovery = 0.778 OIIP

S

Selection of core material

Select representative homogeneous core material

Samples screening and evaluation is needed to perform a proper selection of suitable and representative samples.

- Homogeneity screening (representativity)
- Characterize rock samples and identify representative lithology/rock type
	- 1 rock type per test
- Location of samples reference to reservoir
- All available information and data should be evaluated to be able to perform a proper samples selection, such as
	- CT scan,
	- Basic properties
	- lithological description, formation/zone, hydrocarbon leg (Gas, Water, Oil)
	- MICP, XRD, etc.

Composite Core

Preparation of core material

Cleaning and drying

Preparation Methods

- Restored State Preparation
- Native State Preparation
- Cleaned State Preparation

Considerations for Preparation

- How was the core drilled? (mud type, coring operations, well-site work)
- How the core was handled and preserved

Restored state preparation

- Cleaning and drying methods adapted to clay content and minerology
- If sensitive clay materials consider non-drying route
- Saturate with appropriate brine
- Establish representative initial water saturation
- Restore wettability with live reservoir oil

Centrifuge Drainage to Swi

Methods

- 1. Drainage by Centrifuge
	- i. Fast, suitable for low permeable core material
	- ii. End effect on saturation distribution
- 2. Drainage by Viscous oil drive
	- i. Fast, suitable for unconsolidated core material
	- ii. End effect on saturation distribution
	- iii. Can give too high Swi
- 3. Drainage by porous plate preferred method
	- i. Gives homogeneous water saturation
	- ii. Pc, limited by porous plate, but suitable for most cases
	- iii. Takes longer time but full PcRI not required when using to prepare for relative permeability measurements

Without Porous Plate

With Porous Plate

Composite core **Composite core advantages and disadvantages**

- For flood type tests
- Larger pore volume, higher accuracy on volumetric measurements
- Higher differential pressure across core
- Less impact of capillary end effects.
- Plug samples should be as similar as possible
	- Porosity, permeability
	- Saturation,
	- Pore size distribution
- Risk of effect of discontinuity in core junctions

Reservoir Condition Core Flood Rig

Saturation Determined by:

External Methods

Volumetric (Visual Cell/Separator)

Solvent extraction and Karl Fischer titration – end point

In-situ Methods

Gamma ray attenuation

Tracer Techniques – end point

Stratum Reservoir Carbon Fibre Core Holders

In-Situ Saturation Monitoring (ISSM)

S

In-Situ Saturation Monitoring (ISSM)

$$
I_{(transmitted)} = I_i . e^{-\mu x}
$$

$$
I_{(transmitted)} = I_i . e^{-\{\mu x (1 - \varphi) + \varphi x (S_{w\mu w} + S_{o\mu o})\}}
$$

In-Situ Saturation Monitoring (ISSM)

ISSM For Steady-state Core Flooding

Laboratory Effects

Relative Permeability Models

Corey Relative Permeability Model:

$$
kron = \frac{kro}{kro'} = Son^{No}
$$

\n
$$
k_{ro'} = end-point kro
$$

\n
$$
k_{rw'} = 1 - S_{wir}
$$

\n
$$
k_{rw'} = end-point krw
$$

\n
$$
k_{rw'} = end-point krw
$$

\n
$$
S_{wn} = \frac{S_w - S_{wir}}{1 - S_{wr} - S_{ro}}
$$

\n
$$
S_{nn} = \frac{1 - S_w - S_{ro}}{1 - S_{wr} - S_{ro}} = 1 - S_{wn}
$$

43

Relative Permeability Models

LET Relative Permeability Model:

$$
k_{rw} = k_{rw}^{0} \frac{(S_{w}^{*})^{L_{w}}}{(S_{w}^{*})^{L_{w}} + E_{w}(1 - S_{w}^{*})^{T_{w}}}
$$

$$
k_{ro} = k_{ro}^{0} \frac{(1 - S_{w}^{*})^{L_{o}}}{(1 - S_{w}^{*})^{L_{o}} + E_{o}(S_{w}^{*})^{T_{o}}}
$$

$$
S_w^* = \frac{S_w - S_{wi}}{1 - S_{or} - S_{wi}}
$$

Constraints:

- $L_w \ge 1.0$, $E_w \ge 0.5$, $T_w \ge 0.5$
- $L_0 \geq 1.0$, $E_0 \geq 0.5$, $T_0 \geq 0.5$

where:

History Matching Laboratory Data by Simulation

Core Flood Simulator

Simulation of Transient Data

History matching of oil production and ΔP transient data to derive k_{rw} & k_{ro}

Case History 2 (Negative Imbibition Pc; Oil Wet)

S

Page: 49

Data for the Reservoir Engineer

Z

- 1. Anderson, W. G. (1986, October 1). Wettability Literature Survey- Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability. Society of Petroleum Engineers. doi:10.2118/13932-PA
- 2. Amott, E. (1959, January 1). Observations Relating to the Wettability of Porous Rock. Society of Petroleum Engineers.
- 3. Donaldson, E. C., Thomas, R. D., & Lorenz, P. B. (1969, March 1). Wettability Determination and Its Effect on Recovery Efficiency. Society of Petroleum Engineers. doi:10.2118/2338-PA
- 4. Johnson, E. F., Bossler, D. P., & Bossler, V. O. N. (1959, January 1). Calculation of Relative Permeability from Displacement Experiments. Society of Petroleum Engineers.
- 5. Hagoort, J. (1980, June 1). Oil Recovery by Gravity Drainage. Society of Petroleum Engineers. doi:10.2118/7424-PA
- 6. Forbes, P. (1994, July 1). Simple And Accurate Methods For Converting Centrifuge Data Into Drainage And Imbibition Capillary Pressure Curves. Society of Petrophysicists and Well-Log Analysts.

Thank you!

Helene.Auflem@stratumreservoir.com