

Society of Petrophysicists and Well Log Analysts Qatar Chapter Virtual Series - 8th March 2021

X-RAY Rock Characterization

Millimeter-Scale Log for Cored Intervals and Beyond

Max Podolyak - Technical Director/ SME Middle East AJ Kumar, Ron Cormier, Tom Pugh- Core Laboratories USA

- Core 3D Images, Interactive Access
- Core Petrophysical Characterization
- Automated sample selection
- Other Applications:
 - Density Mapping & Fracture Characterization
 - Net to Gross

Computed Tomography

Conventional 1D X-Ray CT Scanning

Core Plugs Scans

Helical 3D-VCT – Interactive Browser

Core Lab

- Fast Scanning minutes
- Vertical Resolution 0.5mm
- DFOV resolution -0.25 mm
- Full 3D images
- Circumferential Images

Dual Energy CT – Litho-Density Tool Millimeter Scale Petrophysical Characterization

Dual Energy X-Ray Scanning

High kV=> Compton Scattering => Electron Density => Bulk Density

Low kV=> Photoelectric Absorption => Zeff (atomic number) => Rocks Composition

Dual Energy CT – Rhob and Zeff

Lithology Clustering, Z_{eff} vs Rhob

RHOB.g/cc

DUAL ENERGY CT ROCK TYPES

Dual Energy CT High-resolution Lithology Log

HUNNAM

10

Dual Energy CT Porosity Estimation

$$\boldsymbol{\phi} = \frac{\boldsymbol{\rho}_g - \boldsymbol{\rho}_b}{\boldsymbol{\rho}_g - \boldsymbol{\rho}_f}$$

 ρ_b = Bulk Density ρ_g = Grain Density ρ_f = Avg. Fluid Density

DECT Porosity Calibration with Measured Data

Dual Energy CT Composite Tracks

General Outputs:

- 1. Density
- **2. PEF**
- 3. Lithotypes
- 4. Porosity

Empirical Models

- 1. Unconfined Compressive Strength Index
- 2. Acoustic Velocities Vp & Vs
- 3. Young's Modulus and Poisson's Ratio Additional log opportunities
 - 1. Spectral Gamma (Core Gamma)
 - 2. Permeability (PDPK)
 - 3. Mineralog (XRF)
- * Data available in 2 weeks from core arrival

Unconfined Compressive Strength

Models' vs Measurements

Literature Models (Porosity and Lithology based)

Core-Calibrated Dual Energy CT Models (Core Lab Proprietary)

30000

× Carbonates

Linear (Carbonates)

35000

Refined Empirical Models

DECT

Zeff_2020 $R^2 = 0.9464$ DECT Measured

Unconfined Compressive Strength Core Lab DECT vs Scratch Test

Dual Energy CT - Case Study Example

17

Dual Energy CT - Case Study Example

Log Validation Challenging Boreholes

Core Sample Selection

 \checkmark

DECT Applications Automated Sample Selection – ML Clustering

a) Density, Z_{eff}, PHI – Routine Picks
b) Density, Z_{eff}, UCS Index - Mechanical Facies
c) Z_{eff}, PHI, Ka (PDPK) - SCAL

DECT Applications Automated Sample Selection

DECT Integrated Browser with VirtualPlug

Grid View

Virtual Plug (Selection)

DECT Integrated Tracks

DECT Virtual Plug

CT Scanning - Other Applications

• Fracture Characterization & Density

Mapping

Net to Gross

CT Fracture Modeling: Alignment

180*

Core Lab

CT Fracture Analysis – Workflow Example

The fractures within the interactive viewer are identifiable by

- 1) Drilling mud evasion (bright white)
- 2) Open fracture apertures (black); or
- 3) Calcite-filled fractures (gray linear features)

CT Modeling – Density Mapping

CT Density Modeling Panel

CT Fracture Table

• Excel file of all the measure fractures (portion of the file)

							Petal -	- Coring Induced 🧹 Coring Indu				
Fracture Table												
Depth.ft (top) 🚽	Depth.ft (bottom)	Dip Azimu"	Dip Ang'-	Fracture Aperture .mm	Length.ft	Type of Cement ↓↑	Type of Fracture ▼	Notes				
17044.27	17045.34	182	90	0.2	1.07	Spar calcite	extensional	several short multiples				
17044.70	17046.08	322	81	0.15	1.38	partially calcite	open -extensional					
17044.89	17045.32	86	77	n/a	0.43	n/a	petal-induced					
17044.10	17045.20	140	75	0.5	1.10	partially calcite	open -extensional	several multiples				
17045.71	17046.27	165	6	n/a			induced					
17044.70	17045.60	141	77	1.1	0.90	partially calcite	open -extensional	several multiples				
17045.84	17046.77	209	6	n/a			induced					
17045.80	17046.32	136	75	0.3	0.52	Spar calcite	extensional					
17047.07	17047.40	132	79	0.2	0.33	Spar calcite	extensional					

• The second worksheet has other summary plots

FRACTURES:

Open

Mean	Counts 62	Dip[deg] 18.00	Azi[deg] 128.39	
٠	16	74.10	138.02	
⊳	19	1.42	334.35	
•	11	2.29	297.60	
⊳	8	84.69	118.25	
٠	8	79.40	139.42	

Calcite/Dolomite

Net to Gross Analysis

Reserves Estimation

- Petrophysical Cut-offs
- Image logs Analysis
- Conventional Core Description
- Other tools?

CT Density Modeling - NTG

Why Digital NTG?

- Rapid Assessment
- Density mapping along entire core length
- Consistent & Impartial
- Detailed Interval Statistics
- Large region of interest:
 - Slabs, Circumferences, Full 3D objects

CORE ³ : Fracture Analysis & CT Density Modeling									
COMPANY: WELL: FIELD: LOCATION:		PANEL: 1 CORE(S): 2		Interpretation by: Ron Cormier Date: Job#:					
CT_Circum_Threshold CT_Circum_Threshold	C-ImageAnalysis Slab_XZ Z_Threshold Slab_XZ- ImageAu Slab_XZ Z_Threshold Slab_XZ- ImageAu The Slab_XZ ImageAu Slab_XZ Imag	Density per 01% CT_Circum.Mirror 0° 50° 180° 270° 0° CT_Ficks_TsdPoles 100 0° 50° 180° 270° 0° -10 100	#2 #3 Wuff Plot - LH - Prac Wuff Plot - LH - Prac	CT Modellr Noccee Unopel 20 Noccee Unopel 20 Noccee Nocce	g % per sloe Mod2Den 				
			Market - 14-17a Market - 14-17a Market - 14-17a Market - 14-17a		33				

Why CT Scan Cores?

- Quick Turnaround Times
- Digital Preservation of Core For Life
- Rapid Petrophysical Data
- Optimized Sample Strategy
- Better Core Analysis Program
- Reduced Uncertainty
- Interactive Fracture Analysis for better reservoir Network Modelling
- Dual Porosity system characterization
- Rapid, impartial and consistent NTG analysis

